Statistical models and methods for financial markets
Resource Information
The work Statistical models and methods for financial markets represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Statistical models and methods for financial markets
Resource Information
The work Statistical models and methods for financial markets represents a distinct intellectual or artistic creation found in University of Missouri Libraries. This resource is a combination of several types including: Work, Language Material, Books.
- Label
- Statistical models and methods for financial markets
- Statement of responsibility
- Tze Leung Lai, Haipeng Xing
- Language
- eng
- Summary
- This book presents statistical methods and models of importance to quantitative finance and links finance theory to market practice via statistical modeling and decision making. Part I provides basic background in statistics, which includes linear regression and extensions to generalized linear models and nonlinear regression, multivariate analysis, likelihood inference and Bayesian methods, and time series analysis. It also describes applications of these methods to portfolio theory and dynamic models of asset returns and their volatilities. Part II presents advanced topics in quantitative finance and introduces a substantive-empirical modeling approach to address the discrepancy between finance theory and market data. It describes applications to option pricing, interest rate markets, statistical trading strategies, and risk management. Nonparametric regression, advanced multivariate and time series methods in financial econometrics, and statistical models for high-frequency transactions data are also introduced in this connection. The book has been developed as a textbook for courses on statistical modeling in quantitative finance in master's level financial mathematics (or engineering) and computational (or mathematical) finance programs. It is also designed for self-study by quantitative analysts in the financial industry who want to learn more about the background and details of the statistical methods used by the industry. It can also be used as a reference for graduate statistics and econometrics courses on regression, multivariate analysis, likelihood and Bayesian inference, nonparametrics, and time series, providing concrete examples and data from financial markets to illustrate the statistical methods. Tze Leung Lai is Professor of Statistics and Director of Financial Mathematics at Stanford University. He received the Ph. D. degree in 1971 from Columbia University, where he remained on the faculty until moving to Stanford University in 1987. He received the Committee of Presidents of Statistical Societies Award in 1983 and is an elected member of Academia Sinica and the International Statistical Institute. His research interests include quantitative finance and risk management, sequential statistical methodology, stochastic optimization and adaptive control, probability theory and stochastic processes, econometrics, and biostatistics. Haipeng Xing is Assistant Professor of Statistics at Columbia University. He received the Ph. D. degree in 2005 from Stanford University. His research interests include financial econometrics and engineering, time series modeling and adaptive control, fault detection, and change-point problems
- Cataloging source
- COO
- Dewey number
- 332.015195
- Illustrations
- illustrations
- Index
- index present
- Language note
- English
- LC call number
- HG176.5
- LC item number
- .L35 2008
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Springer texts in statistics
Context
Context of Statistical models and methods for financial marketsWork of
No resources found
No enriched resources found
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/z9TagtYSW3A/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/z9TagtYSW3A/">Statistical models and methods for financial markets</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Work Statistical models and methods for financial markets
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.missouri.edu/resource/z9TagtYSW3A/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.missouri.edu/resource/z9TagtYSW3A/">Statistical models and methods for financial markets</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.missouri.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.missouri.edu/">University of Missouri Libraries</a></span></span></span></span></div>